
NAU Energy Dashboard: 

Software Testing Plan  
Version 1.0 

Team: Save Watt 

April 5, 2019 

Sponsored by: 


Jonathan Heitzinger & Dr. Truong Nghiem 

Faculty Mentor:


Isaac Shaffer 

Team members:


Madison Boman, Hyungi Choi, 

Ian Dale, Brandon Thomas 



 

�2

This page was intentionally left blank.



Table of Contents
1. Introduction Page 4
2. Unit Testing Page 6
3. Integration Testing Page 11
4. Usability Testing Page 13
5. Conclusion Page 16

�3



1. Introduction 
1.1 Project Motivation 
In the advent of alarming reports about climate change, there has been an ever-growing 
effort in favor of energy conservation. Climate change is a genuine concern for the future of 
our planet. Northern Arizona University (NAU) has always done its part to reduce waste, 
and promote a greener future. NAU is looking to take further action to improve 
sustainability by leveraging data collection and analysis. 

For the last several years, Northern Arizona University has been collecting a trove of raw 
data related to the operation and energy consumption of its buildings. As of now, there is 
not a comprehensive way to analyze NAU’s energy data. Current methods are 
cumbersome and require a great deal of technical expertise. There are four major issues 
with the existing process that our sponsors would like to solve: 

‣ Manually retrieving data from sensors and the current database is time-consuming. 
Automatic retrieval of the desired data sets is preferred. 

‣ Current tools do not allow for interactive graphs which show trends over 
customizable time frames. 

‣ Broad statistics must be run using external tools. Some automatic statistical 
analysis is preferred. 

‣ Exporting data to mutable file types is very difficult. 

Our sponsors are looking to make the most of NAU’s energy data. This project is 
sponsored by Jonathan Heitzinger and Dr. Truong Nghiem. Together they are looking to 
develop a web-based system which analyzes and elegantly presents NAU’s building 
operation data. They hope to create a product that impacts campus-wide sustainability 
and facilitates the collection and analyzation of NAU’s energy data. To accomplish this, we 
are developing the NAU Energy Dashboard. 

1.2 Solution Overview 
The NAU Energy Dashboard is a comprehensive web-based application which can 
retrieve, graphically display, export, and run basic analytics on NAU’s collected data. We 
plan to simplify the existing process with a tool that abstracts away the complexities that 
stifle current research efforts. Our users would like the NAU Energy Dashboard to: 

‣ Automatically handle building operation data retrieval. 
‣ Graphically display data in a way that is interactive. 
‣ Run applicable broad statistics on a wide range of data points. 
‣ Cleanly export mutable CSV files for additional analysis. 

This solution eliminates the need for sifting through endless data, presenting data using 
external tools, and using specialized tools for fundamental statistical analyses. 

�4



1.3 Software Testing 
To ensure that the NAU Energy Dashboard is functioning properly, we will be performing a 
series of software tests. Software testing is the process of systematically analyzing the 
functionality of a software product. Testing will ensure that the actual functionality of the 
components that make up our system match the expected results. Since this is a public 
system, it is important that the system is defect free and can withstand use by many 
different users. We will conduct a series of tests which will fall under three categories:  

‣ Unit Testing: Testing individual units/components of our system. 
‣ Integration Testing: Testing combined units/components. 
‣ Usability Testing: Testing the system with real users. 

Each category of testing will allow us to test the system in a different way. The unit tests 
will ensure that the methods within each of the system’s key classes are performing 
operations as expected. The methods we will test are those that deal with data. There are 
many components in our system that are provided by Django, so we will only test 
components that were created or highly modified by our team. Integration testing will 
assure us that data is being transferred between components as expected. Since our 
system is made up of python, javascript, and html we will need to test how all these 
components interact with each other. These interactions will mainly be in the form of 
variables passing from python to html to javascript via Django’s render functionality. Finally, 
we will be greatly emphasizing usability testing. Since the NAU Energy Dashboard is a 
publicly accessible web application, it is important that the system is easy to use and fulfills 
the expected functionality. Our greatest improvements and insights to bugs will come from 
real user experience with the system. 

In the following sections we will outline in detail our plans for unit testing, integration 
testing, and usability testing. In each section we will explain each category of testing, why 
it is important to our system, what tools we will be using, and how we will implement the 
tests. We will conclude with an overall timeline for testing our expected outcomes of 
testing as a whole. 

�5



2. Unit Testing 
2.1 Introduction to Unit Testing 
In this section, we will be discussing our plans for unit testing. Unit testing focuses on 
testing the individual components that make up the system. The purpose is to ensure that 
each unit of software performs as designed. Since our system is object-oriented, our units 
will be methods within the most important classes. To carry out the unit tests we will be 
using the unittest module built into the Python standard library. This library is the preferred 
way to write tests in Django. Using this library will also allow us to create an in-depth test 
coverage report. This report will tell us how much of our system is actually being tested, so 
we can gauge whether or not a critical amount of code is being tested. 

We plan to focus on three major modules when conducting unit tests. These modules will 
be backend.py, clean.py, and conversions.py. Each of these modules provides key 
functionality when working with data. Since the data is our main concern, we seek to 
ensure that data is transferred and manipulated as expected. The modules that deal with 
data presentation will be covered in integration testing, as these involve multiple modules 
working together. Here in unit testing, we are looking to ensure the core of our system is 
working as designed.   

In the following subsections we will outline each method being tested, equivalence 
partitions, boundary values (if applicable), chosen inputs, and assurances. Since many of 
these methods rely on instance variables, we will discuss equivalence partitions and inputs 
based on these instance variables rather than parameters if necessary. 

2.2 Testing backend.py 
This module holds two classes, StaticDataRetriever and BackendRetriever. These classes 
are responsible for gathering data from NAU’s energy database and our backend database 
respectively.  

Class: StaticDataRetriever

Method Equivalence 
Partitions Chosen Inputs Assurances

update_buildings(self)

‣ self.b_identifiers = 
invalid_type 

‣ self.b_identifiers = 
invalid_form 

‣ self.b_identifiers = 
valid dict of 
building info

‣ self.b_identifiers = 
7 

‣ self.b_identifiers = 
{ “B1”: [“Name”, 
“Alias”, “other”] 

‣ self.b_identifiers = 
{ “B1”: [“Name”, 
“Alias”], …}

‣ Returns error for 
invalid_type 

‣ Returns error for 
invalid_form 

‣ Creates rows in 
Building table for 
each building

Method

�6



update_sensors(self)

‣ self.log_dict = 
invalid_type 

‣ self.log_dict = 
invalid_form 

‣ self.log_dict = 
valid dict of 
Sensor info

‣ self.log_dict= 7 
‣ self.log_dict = 

{ “Blue” : 
“Banana”, …} 

‣ self.log_dict = 
{ 123_456: 
[“B_num”, 
“Description”, 
“Name”, 
“TrendID”, “Type”], 
…}

‣ Returns error for 
invalid_type 

‣ Returns error for 
invalid_form 

‣ Creates rows in 
Sensor table for 
each sensor

make_log_dict(self)
‣ self.connection = 

valid_sql server 
‣ self.connection = 

invalid_sql server

‣ self.connection = 
valid sql 
connection to 
server 

‣ self.connection = 
12

‣ Return a 
dictionary 
containing 
information 
about buildings 

‣ Return error for 
connection not 
made

__create_trend_string(self, log_id)

‣ log_id = invalid 
trend log string 

‣ log_id = 
invalid_type 

‣ log_id = valid 
trend log string

‣ log_id = 
“123_4D6” 

‣ log_id = 65 
‣ log_id = 

“123_456”

‣ Returns error for 
invalid log_id 
format 

‣ Returns error for 
invalid log_id 
type 

‣ Returns log 
string padded 
with zeros

get_log(self, log_id)

‣ log_id = invalid 
trend log string 

‣ log_id = 
invalid_type 

‣ log_id = valid 
trend log string

‣ log_id = 
“123_4D6” 

‣ log_id = 65 
‣ log_id = 

“123_456”

‣ Returns error for 
invalid log_id 
“Not Found” 

‣ Returns error for 
invalid log_id 
type 

‣ Returns 
dictionary of log 
values from 
database

Equivalence 
Partitions Chosen Inputs AssurancesMethod

�7



Class: BackendRetriever

Method Equivalence 
Partitions Chosen Inputs Assurances

getBuildingStrings(self)

‣ Buildings = 
invalid_type 

‣ Buildings = list 
of 
models.Buildin
g

‣ Buildings = 43 
‣ Buildings = 

[<Building 
1>, ..]

‣ Returns error 
for invalid 
buildings 

‣ Returns a list of 
strings 
representing 
the building 
models

get_data(self, building, sens_type, 
init_date, fin_date, incr=1)

‣ Building = 
invalid_type 

‣ sens_type = 
invalid_type 

‣ init_date = 
invalid_type 

‣ fin_date = 
invalid_type 

‣ Incr = invalid 
type 

‣ All valid inputs

‣ Building = 74 
‣ sens_type = 32 
‣ init_date = 123 
‣ fin_date = 432 
‣ Incr = “Hello” 
‣ Building = 

models.Buildin
g, sens_type = 
“Electric”, 
init_date = 
datetime.dateti
me, fin_date = 
datetime.dateti
me, Incr = 45

‣ Returns error 
for invalid 
building 

‣ Returns error 
for invalid 
sensor_type 

‣ Returns error 
for invalid date 

‣ Returns error 
for invalid date 

‣ Returns error 
for invalid 
Increment 

‣ Returns tuple 
of dates and 
values for 
parameters

get_num_strings(self)

‣ Buildings = 
invalid_type 

‣ Buildings = list 
of 
models.Buildin
g

‣ Buildings = 43 
‣ Buildings = 

[<Building 
1>, ..]

‣ Returns error 
for invalid 
buildings 

‣ Returns a list of 
strings 
representing 
the building 
numbers

�8



2.3 Testing clean.py 
This module holds the cleaner class. This class is responsible for parsing inputs from the 
user as they explore the website. 

Class: Cleaner

Method Equivalence Partitions Boundary 
Values Chosen Inputs Assurances

get_datetime(time)
‣ Time = invalid_type 
‣ Time = invalid_format 
‣ Time = valid_format

‣ None

‣ Time = 12 
‣ Time = “12-1-17 

4:30:45PM” 
‣ Time = 

“February 2, 
2017 
5:37:21PM”

‣ Returns error for 
invalid_type 

‣ Returns error for 
invalid format 

‣ Returns time as a 
datetime.datetime 
object

get_build_info(str)
‣ Str = invalid_type 
‣ Str = invalid_format 
‣ Str = valid_format

‣ None

‣ Str = 12 
‣ Str = “Hello” 
‣ Str = “Adel 

Mathematics 
(B26)”

‣ Returns error for 
invalid_type 

‣ Returns error for 
invalid format 

‣ Returns a tuple 
containing (“Adel 
Mathematics”, 
“B26”)

split_urls(builddata,
flag)

‣ Buildata = 
invalid_type,  
Flag = valid_input 

‣ Buildata = 
valid_input,  
Flag = invalid_type 

‣ Buildata = 
invalid_format,  
Flag = valid_input 

‣ Buildata = 
valid_input,  
Flag = invalid_form 

‣ Buildata = 
valid_input,  
Flag = valid_input

‣ None

‣ Buildata = 12, 
Flag = valid_flag 

‣ Buildata = 
valid_buildata, 
Flag = 12 

‣ Buildata = 
“Buid=“B60”, 
Flag = valid_flag 

‣ Buildata = 
valid_buildata, 
Flag = “Sensor” 

‣ Buildata = 
valid_buildata, 
Flag = valid_flag

‣ Return error for 
invalid buildata 
type 

‣ Return error for 
invalid flag type 

‣ Return error for 
invalid buildata 
format 

‣ Return error for 
invalid flag format 

‣ Return list which 
includes [Building 
Num, Utility/
Sensor, start 
time, end time]

�9



2.4 Testing conversions.py 
This module holds the conversions class. It holds many functions that are responsible for 
converting data between units. The functions here are of two types. They either solely take 
data as an input or they take data and some exchange rate. The exchange rate could be a 
price or other proportion necessary for conversion. Here we show how we will test 
functions that fit either type. 

2.5 Summary 
These tests will ensure that the core backend functionality is performing as expected. All of 
the methods above are responsible for generating the data that is passed throughout our 
system. Therefore, each must return values as expected and alert of any errors. In the 
following section we will move to the modules that make use of this core functionality. This 
will be our integration testing phase. 

Class: Conversions

Method Equivalence 
Partitions

Boundary 
Values Chosen Inputs Assurances

kbtu_to_btu(data)* 

*Many functions in 
conversions.py follow this 
structure. They can all be 
summed up by this test.

‣ Data < 0 
‣ Data > 0 
‣ Data = 

invalid_type
‣ Data = 0

‣ Data = -10 
‣ Data = 30 
‣ Data = “30”

‣ Returns error 
for negative 
values 

‣ Returns valid 
output 

‣ Returns error 
for invalid 
value

dollars_to_btu(data, price)*  

*Many functions in 
conversions.py follow this 
structure. They can all be 
summed up by this test.

‣ Data < 0, 
price < 0 

‣ Data > 0, 
Price > 0 

‣ Data = 
invalid_type, 
Price = 
invalid_type 

‣ Data > 0, 
Price < 0 

‣ Data = 0 
‣ Price = 0

‣ Data = -10, 
Price = -2 

‣ Data = 30, 
Price = 3 

‣ Data = “Test”, 
Price = “Test” 

‣ Data = 1, 
Price = -4

‣ Returns error 
for negative 
values 

‣ Returns valid 
output 

‣ Returns error 
for invalid 
types 

‣ Returns error 
for negative 
price value

�10



3. Integration Testing 
3.1 Introduction to Integration Testing 
In this section, we will be discussing our plans for integration testing. Integration testing 
focuses on testing the components in groups. The purpose is to ensure that each module 
interacts with the others as expected. This level of testing can show us where modules are 
failing to communicate properly. Django uses two main modules that ensure the aspects of 
the backend and the front end communicate as expected. These modules are models.py 
and views.py. These modules handle the transfer of data and presentation of data 
respectively.  

Django uses the pyVows package to ensure that all contracts of communication are 
honored. This package can ensure that the models are constructed correctly and that 
views.py is rendering pages correctly.  

In the following subsections we will outline each method being tested, equivalence 
partitions, boundary values (if applicable), chosen inputs, and assurances. Since many of 
these methods rely on instance variables, we will discuss equivalence partitions and inputs 
based on these instance variables rather than parameters if necessary. 

3.2 Testing models.py 
Models.py defines each of the tables in our backend database and their relative columns. If 
any of these entries are formatted incorrectly, then our system will not run correctly. In 
models.py we have 3 main tables, Building, Sensor, and User. The Building table describes 
our buildings. Each building has a name, number(Unique), alias(Unique), and id(Unique). 
These inform our Sensor model which stores sensor data associated to a given building. 
Finally our User table holds usernames, passwords, emails, and permission levels in order 
to manage authentication.  

Using pyVows we can run two tests which ensure data is being created and stored 
properly. PyVows includes a method that builds a mock model and then asserts that all the 
fields are filled correctly. This method interacts with our database as well as an 
HTTPContext to simulate real interaction with data.  

PyVows also allows us to use the method “should_be_cruddable(self, model).” This 
method updates and the database with dummy data and flushes it. With this method and 
a test html page we can ensure that any GET and POST methods that involve our models 
will work properly with our rendered pages.  

3.3 Testing views.py 
Views.py defines the functionality of each of our application’s pages. Each of these 
functions takes in a request and any URL parameters and renders a context based off of a 
given template. This is where everything comes together. Views.py consists of 18 different 
functions. Each is a variation of one of our 7 core pages. Here we can use a combination 

�11



of pyVows and Django.test.Client to ensure that the application knows how to respond 
when given different URLs.  

PyVows allows us to create mock models and contexts to be fed to the system via 
requests. These requests are read by views.py and we can then run assurance tests on 
the responses. These responses will be come in the form of HTTP response codes which 
we can interpret. In most cases we will receive a 200 or 404 response. If these tests return 
what is expected, we can be sure that each of our views is performing as expected.  

3.4 Summary 
Ensuring that each model and each view is functioning as expected will tell us that our 
system abides by its own communication contract. This, however, is not enough to ensure 
a system that works as expected. Our system is highly user centric, and thus must 
perform as they expect. This leads us to usability testing, which we will outline in the 
following section.  

�12



4. Usability Testing 
4.1 Introduction to Usability Testing 
In this section, we will be discussing our plans for usability testing. Usability testing focuses 
on the user’s experience with the system. The purpose is to ensure that system meets the 
users expectations and is accessible to our target user base. This level of testing can show 
expose logical bugs and user errors that the system must be equipped to handle. It can 
also give us qualitative information regarding our system as a whole.  

We have two main user groups for our system: general users and administrative users. 
General users may be students, staff, and the general public which may be interested in 
how NAU consumes energy. Administrative users are researchers and administrative staff 
that are interested in deeply analyzing each aspect of NAU’s consumption. We will be 
conducting tests with each of these groups to gain insight on improvements that can be 
maid from either perspective.  

We will mainly be using think aloud testing to gauge the user’s experience as they use the 
system. Using this method, the user will be expected to express thoughts about the overall 
aesthetics of the system as well as their thoughts about the difficulty carrying out tasks. 
This testing method may be used alongside timed tests to measure the speed and ease of 
use of the system. In the following subsections we will outline how each of our main pages 
will be tested by users to gain insight into our system.  

4.2 Testing homepage 
Homepage testing will consist of 3 main parts: Registration, Log-in, and exploring 
aggregate data. The user will be asked to think aloud as they perform each of these tasks. 
The user will be given no instruction besides what they are meant to accomplish. This will 
allow us to gain insight into how intuitive the system is. The first time these tasks are 
performed, we will time the user to benchmark the speed of each task as well as how long 
a user might take to learn how to accomplish the task. The homepage tasks are described 
as follows: 

‣ Create an account to log-in 
‣ The user should head to the Sign-Up! Link from the homepage. 
‣ The user should enter their credentials 
‣ The user should submit their information and be redirected. 

‣ Log in using a previously created account 
‣ The user should head to the Log-in link from the homepage 
‣ The user should enter their credentials 
‣ The user should submit their information and be redirected. 

‣ View aggregate data 
‣ The user should toggle between different unit types 

�13



‣ The user should describe the information they are viewing in context 

4.3 Testing building page 
Building page testing will consist of 3 main parts: Navigate to a building page, View 
aggregate building data, and View data for a utility/sensor of choice. This will allow the user 
to carry out the main functionality of any building page while thinking aloud. The first and 
third tasks will be timed to gauge efficiency. 

‣ Navigate to a building page 
‣ The user should head to the buildings menu in the header 
‣ The user should search for a building either by searching or using autofill 
‣ The user should be redirected to the building of their choice 

‣ View aggregate building data 
‣ The user should comment on the information immediately presented to them 

on the building page 
‣ The user is free to toggle any of the buttons on the page and express their 

thoughts 

‣ View data for a utility/sensor of choice 
‣ The user should use the graphing tool to see trends on data of their choice 
‣ The user should enter a date range, increment, and utility/sensor in order to 

graph their data. 

4.4 Testing export/comparison page 
Export/comparison page testing will consist of 3 main parts: Navigate to the export/
comparison page, View data for utilities/sensors of choice, and Export data to CSV. This 
will allow the user to carry out the main functionality of these pages while thinking aloud. All 
tasks will be timed to gauge efficiency. 

‣ Navigate to export/comparison page 
‣ The user should head to the appropriate link in the header 
‣ The user should comment on the initial presentation of the page 

‣ View data for utilities/sensors of choice 
‣ The user should use the graphing tool to see trends on data of their choice 
‣ The user should enter a date range, increment, buildings, and utilities/sensors 

in order to graph their data. 
‣ The user should comment on the presentation of data 

‣ Export data to CSV 
‣ The user should use the export button to receive their data as a .CSV file 
‣ The user should comment on the presentation of the .CSV file 

�14



4.5 Testing admin page 
Admin page testing will consist of 3 main parts: Navigate to the admin page, Edit 
permissions, and Perform a manual update. This will allow the user to carry out the main 
functionality of this page while thinking aloud. All tasks will be timed to gauge efficiency. 

‣ Navigate to the admin page 
‣ The user should head to the appropriate link in the header 
‣ The user should input their admin credentials 
‣ The user should comment on the presentation of administrative functionality 

‣ Edit permissions 
‣ The user should navigate to the user side of the admin page 
‣ The user should promote or demote a user of choice 
‣ The user should comment on the process 

‣ Perform a manual update 
‣ The user should be able to refresh the backend database with a click of a 

button 
‣ The user should click the “Update system” button 
‣ This will be timed to see how long an update might take 
‣ The user should then navigate to the main site to see what data may have 

changed. 

4.6 Summary 
These user tests will allow us to continue to improve the system and ensure our users are 
satisfied. These user tests will take place at the end of our development cycle. Here we will 
have three days of interviews followed by three days of refactoring. This will happen in 
three cycles such that we test the system for a total of 18 days. At the end of the testing 
period we may perform final refactoring in order to ensure a stable release of the system. In 
the following section we will briefly review the topics covered in this document and 
conclude with our vision of a highly usable product. 

�15



5. Conclusion 
Sustainability is a growing global concern. Any step we can take to manage our 
consumption of resources more efficiently is a step in the right direction. Our mission is to 
create an interactive energy dashboard for NAU’s facility services. As we work with our 
sponsors, Jonathan Heitzinger and Truong Nghiem, to create the NAU Energy Dashboard, 
we are ensuring that NAU positively impacts the future of our planet and is a leader among 
the Universities of the world. 

In this document we have covered our plans for Unit Testing, Integration Testing, and 
Usability Testing. These series of tests will ensure that our system is ready for a stable 
release at the end of the development period. By thoroughly testing the main components 
of our system and gathering user feedback we will be able to deliver a maximally error-free, 
functional, and highly usable software product. In the end this will lead to a successful 
NAU Energy Dashboard. 

�16


